

Coupled Ocean-Wave-Atmosphere Modeling of a Cold Wake Producing Mediterranean Cyclone

Sophia E. Brumer

F. Pantillon¹, J. Pianezze¹, M. Ragu-Fonta², Y. Le-Peru-Morvan², M. N. Bouin³, A. Ricchi⁴, and L. Grand²

¹CNRS LAERO, Toulouse, France, ²Université Toulouse III – Paul Sabatier, Toulouse, France, ³University of L'Aquila, CETEMPS, CNR-ISMAR, Italy, ⁴Meteo France CNRM, France

Medicane (Mediterranean hurricane) Ianos

Medicanes (no official definition)

Hybrid cyclone in the extratropics

- Presenting some characteristics of tropical cyclones (TCs)
- BUT smaller & shorter lived than TCs

How close is lanos to a tropical cyclone? How do coupled processes impact lanos?

sophia.brumer@cnrs.fr

28

27

26

25 24 23

22

21

20

The French coupled model framework

Numerical simulations

4 simulations @ 1.8 km resolution:

- 1. Atmosphere only
- 2. AO: atmosphere-ocean
- 3. AOW : atmosphere-ocean-waves
- 4. AOWSS : AOW with sea spray

- → Higher resolution leads to deeper low Our runs vs. ERA5/IFS
- \rightarrow Coupling decreases intensity closer to in situ observation
- → Track minimally impacted by coupling and well represented in all simulations

sophia.brumer@cnrs.fr

Coupling impacts on the 10-m winds

Wave coupling

- → lowers the 10-m winds closer to scatterometer observations
- → increases the drag coefficient for winds between 10 and ~ 25 m/s (WASP design)

Sea spray has negligible impact on the drag but slightly decreases the intensity

Impacts of sea spray

Sea spray cools the boundary layer → suppresses deep convection → weakens storm

Equ. pot. temp

6

OWA

---· OWA w. spray

(a)

72

70

Coupling impacts on the 3D wind structure

Cold wakes & Salinity

along the path in 2 separate patches

Varied salinity response

sophia.brumer@cnrs.fr

Wake-eddy interaction

Warmcore eddy on the path could

• account for 'break' in cold wake

Wake-eddy interaction

Warmcore eddy on the path could

- account for 'break' in cold wake
- be responsible for the 2nd intensification

15°F

18°F

21°F

sophia.brumer@cnrs.fr

Conclusions & Perspectives

lanos is a Mediterranean cyclone with 'tropical-like' characteristics in that it produces a **cold wake that negatively impacts its intensity**

km-scale coupled atmosphere-wave-ocean simulations of Medicane lanos

- 1. Allowed good representation of the storm track & intensity & cold wake
- 2. Showed that waves & sea spray accentuate MABL asymmetry
- 3. Revealed how sea spray weakens storm due to boundary layer cooling
- 4. Suggests potential warmcore eddy cyclone interactions

COUPLED MODELING IS NECESSARY FOR MEDICANES