The latest satellite-based advancements on the characterization of potential Mediterranean tropical-like cyclones

1 Institute of Atmospheric Sciences and Climate (ISAC), CNR, Rome, Italy

2 LMD & LadHyX, CNRS, 'Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

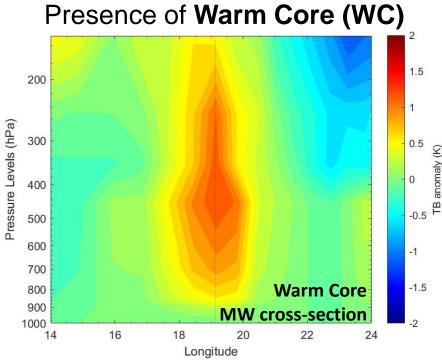
3 Department of Earth and Geoenvironmental Sciences, University of Bari, Bari, Italy

4 University of Wisconsin-CIMSS, Madison, United States

5 The Institute of Soil, Water, and Environment Sciences, Agriculture research organization, Israel

Motivation

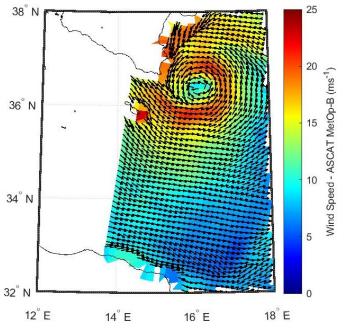
- Can be a cyclone defined as medicane?
- If yes, did it go under tropical transition?
- All the analysis are satellite-based



- New definition of medicane
- Brief description of instruments and frequencies used
- Three case studies: cyclone Helios, Juliette and Daniel
 - short introduction
 - we are going to answer to these questions

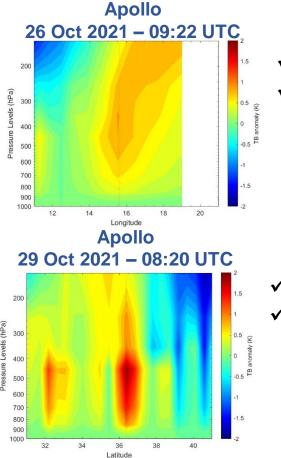
Conclusions

What is a Medicane?


A *Medicane* or *Tropical-Like Cyclone* (*TLC*) is a mesoscale system which develops in the Mediterranean Sea and displays characteristics similar to Tropical Cyclones (TC):

Spiraling cloud structure and rainbands around an **almost-cloudless** "eye"

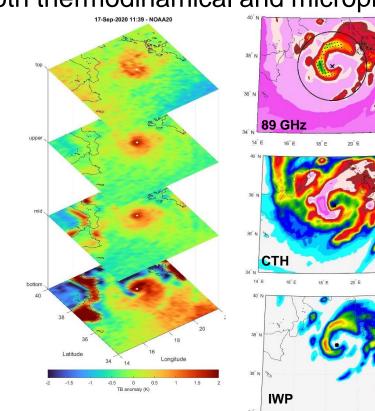
Medicane "Numa" MODIS Terra 18 Nov. 2017 Symmetric surface wind field with maximum speed within a few tens of km from the center



Medicane "Apollo" wind field 29 Oct. 2021

MW vertical cross-section of TB anomaly for medicane Zorbas, 29 Oct. 2018.

Medicane – Tropical Transition


- Different features can be used to identify a tropical transition for a medicane:
 - $\checkmark\,$ WC sustained by diabatic forcing
 - $\checkmark\,$ Deep convection close to the cyclone centre triggering the WC
 - $\checkmark\,$ Latent heat exchange with sea surface
- Satellite data and tools are useful to identify the tropical transition
- Passive microwave data are able to characterize both thermodinamical and microphysical processes

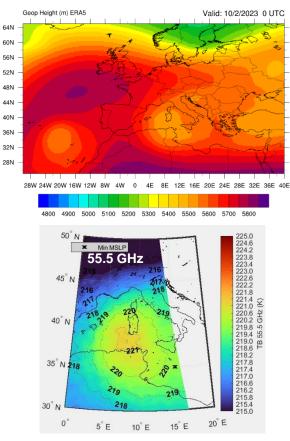
- Top-bottom WC
- WC development originating from stratospheric warm air intrusion

- ✓ Bottom-top WC
- WC development originating from diabatic heating, airsea interaction and latent

Di Francesca et al., 2024 Atm. Res., Under Review

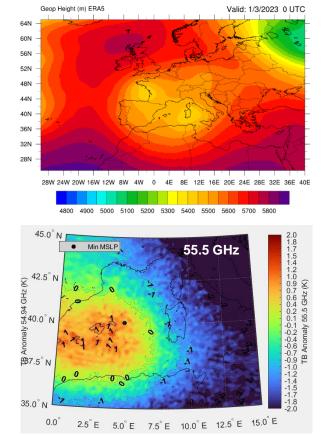
> Deep convection close to the cyclone centre is an indication of the development of a bottom-top WC

Passive Microwave Radiometry – Instruments & Frequencies


	AMSU-A/B - MHS	ATMS	Feng-Yu
Satellites	NOAA15/16/17/18/19 , MetOp-A-B-C	S-NPP, NOAA20, NOAA21	FY-3D, FY-3E, <mark>FY-3</mark> F
Scanning Type	Linear cross-track	Linear cross-track	Linear cross-track
54 GHz channels resolution	48 km (nadir); 150 km x 80 km (swath's edge)	31.6 km (nadir); 137 km x 60 km (swath's edge)	31.6 km (nadir); 137 km x 60 km (swath's edge)
183 GHz channels resolution	16 km (nadir); 50 km x 26.7 km (swath's edge)	15.8 km (nadir); 68.4 km x 30 km (swath's edge)	16 km (nadir); 68.4 kn x 30 km (swath's edge
LSOkm Resolution ~ 50km - 150km		ASCAT scatterometer (C-band radar) to derive wind field at the sea surface (data only over sea)	
		WinRad scatterometer (C/Ku-band radar) to derive wind field at the sea surface (data only over sea)	
₩1	FoV 30	Investigation of this channel to re WC's 3D shape o	econstruct the

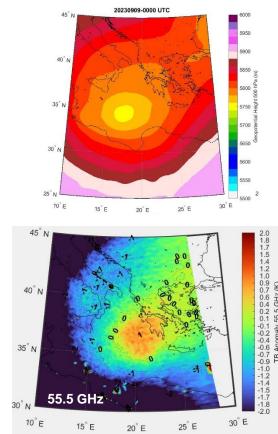
Frequency (GHz)	Application		
53.596	Atmospheric TB at 600 hPa (~4 km)		
54.4	Atmospheric TB at 450 hPa (~6 km) Atmospheric TB at 300 hPa (~9 km)		
54.94			
55.5	Atmospheric TB at 200 hPa (~12 km)		
TB warming due to cloud water emission + TB cooling due to hig density ice scattering			
183.31 ±7	83.31 ±7TB warming due to WV emission ~ 6 km + TB cooling due to medium- density ice scattering		
183.31 ±3	TB warming due to WV emission ~ 9 km + TB cooling due to medium- density ice scattering		
183.31 ±1	TB warming due to WV emission ~ 12 km + TB cooling due to low-density ice scattering		

Case Studies

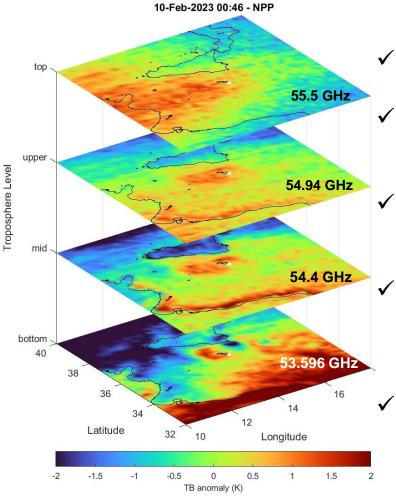

Helios

- 8 10 Feb 2023
- Originated from stratospheric warm air intrusion
- South Mediterranean

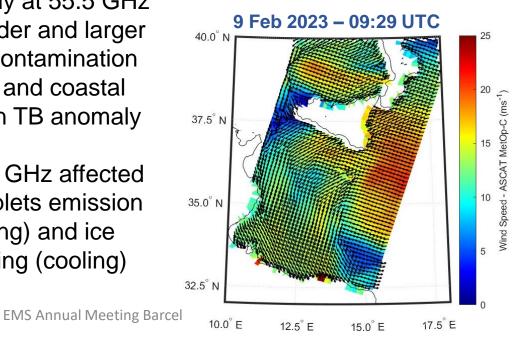
Juliette


- 27 Feb 3 March 2023
- Originated from stratospheric warm air intrusion
- West Mediterranean

EMS Annual Meeting Barcelona, 2-6 Sep 2024

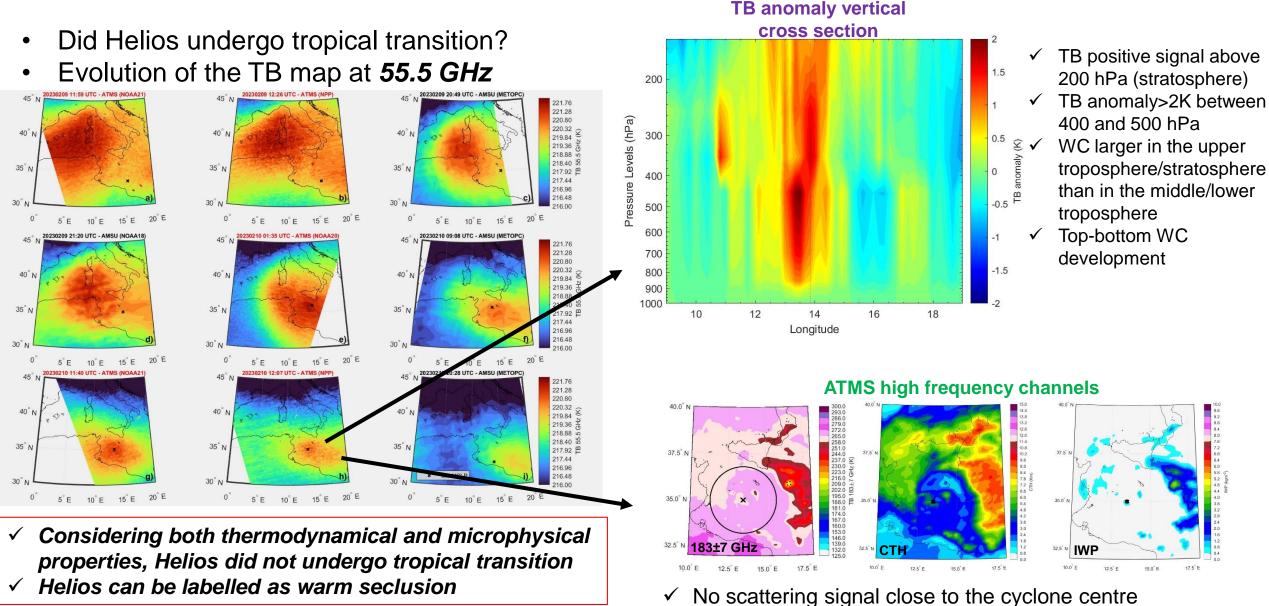

Daniel

- 5-10 Sep 2023
- Originated from stratospheric warm air intrusion
- Ionian Sea


Helios

Can Helios be considered a medicane?

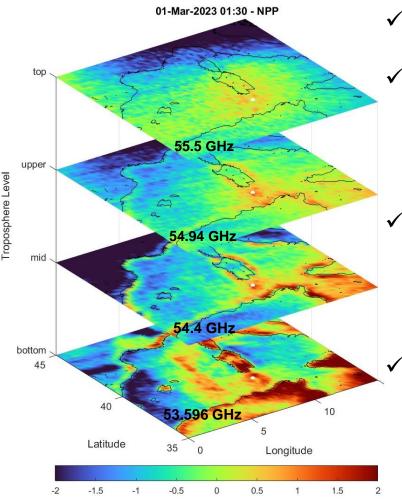
- ✓ The Warm Core (WC) is present
- \checkmark The WC shape is quite well defined at 54.4 and 54.94 GHz ✓ The positive TB anomaly at 55.5 GHz is broader and larger Clear contamination of land and coastal lines on TB anomaly signal
 - 53.596 GHz affected by droplets emission (warming) and ice scattering (cooling)



- SEVIRI VIS channel 12:00 UTC 10 Feb 2023
- Spiralling cloud structure
- Quite large cloudless eye

✓ No wind data available during the Helios mature phase Only two satellite scatterometers (ASCAT onboard MetOp-B/C) working at Helios time

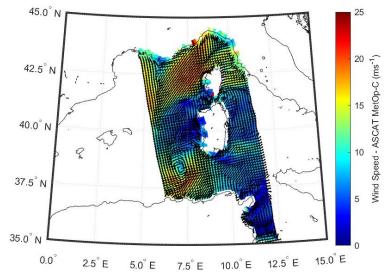
Helios



EMS Annual Meeting Barc

Absence of light and heavy ice particles Deep convection (DC) activity very far from cyclone centre

Juliette

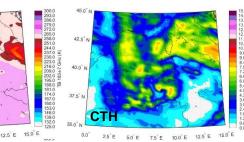

Can Juliette be considered a medicane?

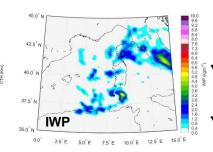
- ✓ The Warm Core (WC) is present \checkmark The WC shape is quite well defined and marked at 54.4 and 54.94 GHz (small size) ✓ The positive TB anomaly at 55.5 GHz is weaker and not well defined Clear
 - contamination of land and coastal lines on TB anomaly signal

28 Feb 2023 - 20:56 UTC

- ✓ SEVIRI VIS channel 12:00 UTC 1 Mar 2023
- Spiralling cloud structure
- Well defined cloudless eye

- Cyclonic wind structure already visible at the end of 28 Feb
- Some frontal lines still present at this stage

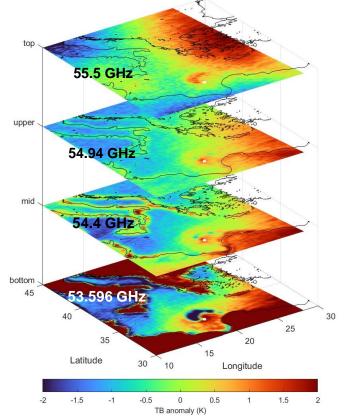

MetOp-


EMS Annual Meeting Barcelona, 2-6 Sep 2024

- ✓ Stratospheric warm air intrusion started on 27 Feb 2023
 ✓ The effect of stratospheric warm air intrusion ended from
- The effect of stratospheric warm air intrusion ended from the night on 1 Mar 2023

Differently from Helios, the presence of DC close to the cyclone centre and the bottom-top WC development, highlighted as Juliette underwent tropical transition

GHz channel

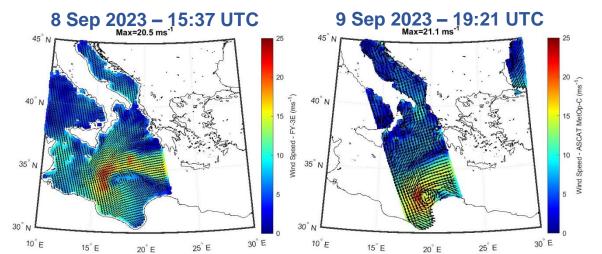

In the previous overpasses the DC activity was more evident

Weak scattering signal close to the cyclone centre @ 183±7

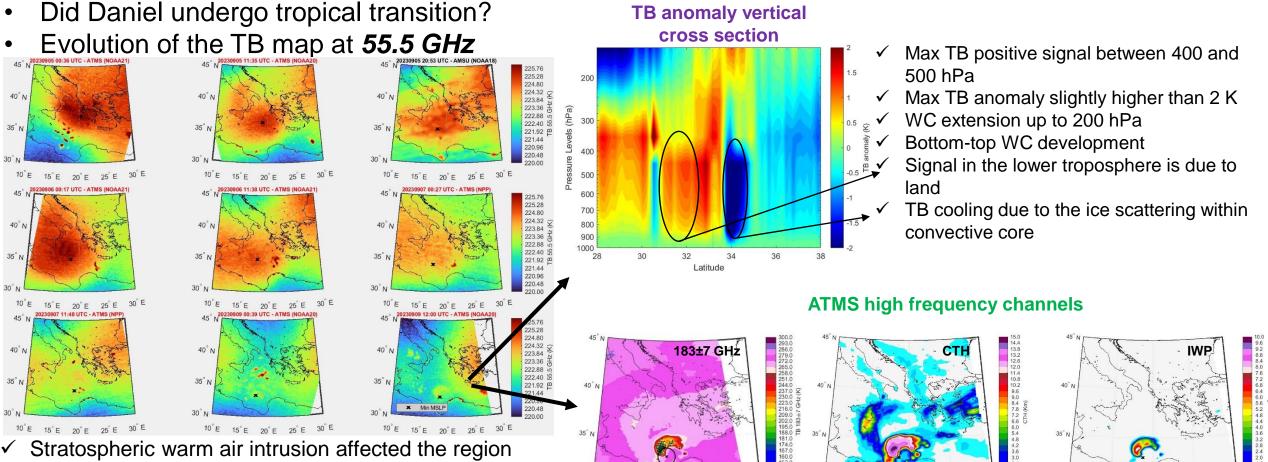
Cyclonic cloud structure evidenced by high frequency channels

The development of WC is driven by DC

Can Daniel be considered a medicane?



- $\checkmark~$ The Warm Core (WC) is present
- ✓ The WC shape is quite well defined and marked from 54.4 to 55.5 GHz channels
- ✓ The TB signal at 53.596 GHz highlights both the presence of DC (negative TB anomaly) and the emission of raindrops (positive TB anomaly)
- The proximity to the coastal lines slightly affects the TB anomaly signal


Daniel

- ✓ SEVIRI VIS channel 9 Sep 2023 15:45 UTC
- ✓ Spiralling cloud structure
- Not completely closed cloudless eye
- Unavailability of VIS images later on this day

- Availability of Feng-Yun WinRad data increase the monitoring capability medicanes
- ✓ Evolution from a more frontal to a cyclonic wind structure

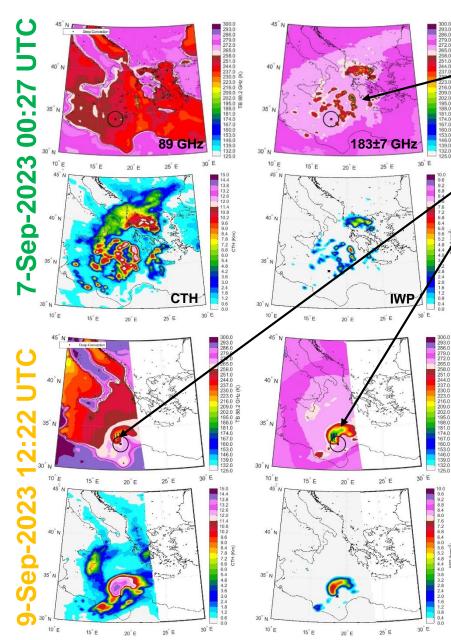
Daniel

- Stratospheric warm air intrusion affected the region from 5 Sep through 7 Sep 2023
- Warming of the upper troposphere/lower stratosphere visible again on 9 Sep 2023

Daniel showed the presence of DC close to the cyclone centre and the bottom-top WC development

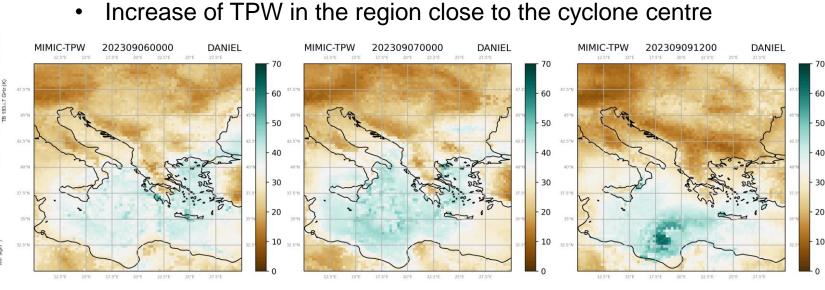
Daniel underwent tropical transition

 Marked scattering signal at all high frequency channels close to the cyclone centre


25° E

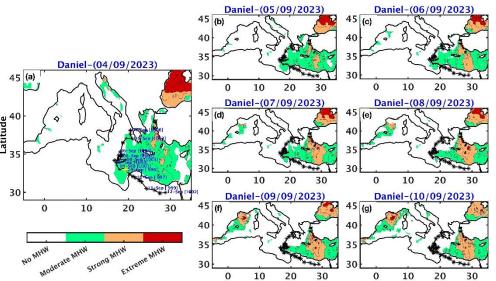
 TB cooling at 89 GHz highlights the presence of heavy ice particles

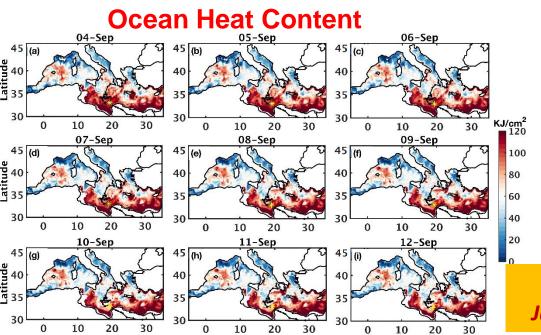
25° E


Daniel

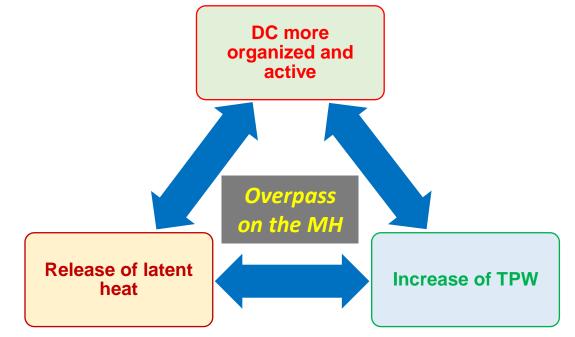
• Why Daniel showed medicane's features and underwent tropical transition only just before the landfall?

- Daniel stayed more the 4 days over the Ionian Sea
 In the initial phases, the DC was scattered, weak and far from the cyclone centre
 - In the mature stage, the DC became organized, more intense (TB cooling at 89 GHz) and close to the cyclone centre Are we able to explain this evolution?


Analysis of Total Precipitable Water (TPW)



EMS Annual Meeting Barcelona, 2-6 Sep 2024


Daniel – Air-Sea Interaction

Marine Heatwave

- ✓ Daniel overpassed a moderate marine heatwave (MH) providing additional strength to the cyclone
- ✓ Considerable amount of ocean heat content (OHC) was available in the offshore the Libyan coasts

✓ Positive air-sea interaction feedbacks which provided addition power to Daniel favouring the tropical transition

Courtesy of Babita Jangir Jangir et al., 2024 (In preparation)

Conclusions

- Satellite passive microwave (PMW) radiometers provides useful measurements for identification and characterization of phenomenological features and physical processes in medicanes
- Presence and origin of the warm core, presence of the closed eye, wind field structure can be inferred from PMW measurements
- Deep convection features allow to identify a tropical transition for Juliette and Daniel, but not for Helios
- In addition, the analysis of air-sea interaction shed lights on the reason why Daniel showed medicane's features and went under tropical transition only in the last part of its lifetime
- Compound analysis of atmospheric and marine parameters provides useful results in characterizing the physical processes responsible for medicane formation

Thank you for your attention!

leopio.dadderio@artov.isac.cnr.it

EMS Annual Meeting Barcelona, 2-6 Sep 2024