On the automated detection of the rotational center for the characterization of Mediterranean cyclones

Stefano Sebastianelli¹, Leo Pio D'Adderio¹, Paolo Sanò¹, Daniele Casella¹, Giulia Panegrossi¹, and Derrick Herndon² ¹Institute of Atmospheric Sciences and Climate, National Research Council of Italy, CNR-ISAC, Rome, Italy ²Cooperative Institute of Meteorological Satellite Studies (CIMSS) - University of Wisconsin-Madison e-mail: s.sebastianelli@isac.cnr.it

DEFINITION OF MEDICANES

Mediterranean cyclones showing tropical-like characteristics during their mature phase are characterized by: ring-shaped closed cyclonic circulation with strong near-surface wind field; quasi-calm cloud free eye in its center; spiraling heavy rain bands around the center; possible deep warm core (WC) of diabatic origin, deep convection (DC) in proximity of the center (Panegrossi et al., 2023).

OBJECTIVES

- sea surface wind field characterization through the definition of a Rotational Center (RC) and Radius of Maximum Wind (RMW), similarly to tropical cyclones (Rogers and Reasor, 2013);
- highlight the differences in terms of surface wind field between the development and the tropical-like phase;
- analyse the behaviour of RMW in the presence of WC.

DATASET

- Sea surface wind speed and direction \rightarrow OSI SAF product from ASCAT on board Metop satellites
- Mean Sea Level Pressure (MSLP) → hourly estimates by ERA5 reanalysis
- **Brightness Temperature (TB)** \rightarrow AMSU-A/B/MHS passive microwave radiometer on board Metop

satellites

Medicane	Duration	Useful overpasses	10 Medicanes occurred
Rolf	20111105-09	2	from 2011 to 2023 are
Qendresa	20141106-09	2	analysed according to
Trixie	20161028-31	6	the ASCAT useful
Zorbas	20170927-29	4	
Numa	20171115-19	5	overpasses avaidinty.
Ianos	20200916-19	3	
Apollo	20211026-31	9	
Blas	20211107-15	10	
Juliette	20230227- 20230303	5	
Daniel	20230905-10	3	

METHODOLOGY

- Medicane Rotational Center Automated **Detection (MeRCAD):**
- minimum of ERA5 MSLP = P; maximum of ASCAT wind speed = Vmax;
- identification of two boxes of 0.5° surrounding P and Vmax;
- computation of the wind speed standard deviation in a 2x2 pixel moving window inside each box;
- selection of the ASCAT pixel closest to P where the standard deviation belongs to the 90th percentile and wind speed < 12 m/s for each box;
- between the two pixels thus detected, the RC corresponds to the pixel with the minimum wind speed.

A wide area of calm winds near the center exists rather than an <<eye>>, so it is more difficult to identify the RC • The cyclonic vortex structure of strong winds is not present at this stage • Distance between band of maximum winds and RC is higher than in mature phase (ellipse) • Wind speed is lower than in mature phase • Trends of maximum, mean and median wind speed show almost a plateau.

ASCAT 20211030 1909

RMW computation: as the distance between the band of the maximum winds and RC.

CONCLUSIONS

- RMW decreases as the medicane intensifies (as wind speed and MSLP gradient increase, or the minimum MSLP decreases); MeRCAD RMW analysis can be used as proxy of medicanes intensification;
- generally, the distance between P and RC decreases as RMW decreases and during the mature phase; • in most cases WC center falls within the RMW, even if at larger distances from the RC with respect to P.

FUTURE DEVELOPMENTS

- data provided by the Wind Radar (WindRAD) onboard of Feng Yun FY-3E satellite series will be used;
- comparison with cyclone center based on Cloud Top Height (CTH) field;
- ARCHER will be applied to all medicane cases.

ACKNOWLEDGMENTS

This work is part of the ESA project "Earth Observations as a cornerstone to the understanding and prediction of tropical-like cyclone risk in the Mediterranean (MEDICANES)".

An eye of calm winds close to the RC exist • A cyclonic vortex structure appears forming a ring of strongest winds around the eye • Distance between band of maximum winds and RC (RMW) is shorter than in development phase (ellipse) • Wind speed is greater than in development phase • Trends of maximum, mean and median wind speed show a peak located in correspondence with the band of maximum winds followed by a decreasing trend with distance • WC due to diabatic heating (with deep convection in proximity of the center) may occur at distances shorter than the RMW.

Satellite-based RMW provides additional information on the detection of Medicanes' intensification phase

Comparison between the use of ERA5 and WC center for RC estimation

TRIXIE						
P-RC (km)	RMW (km)	WC-RC (km)	DATE TIME			
30.44	134.5	41.5	2016-10-28 19:40			
38.57	191.9	-	2016-10-28 20:26			
26.15	91.0	-	2016-10-30 08:25			
40.91	79.5	-	2016-10-30 09:19			
28.5	52.5	-	2016-10-31 08:59			
IANOS						
P-RC (km)	RMW (km)	WC-RC (km)	DATE TIME			
40.5	72.5	-	2020-09-16 08:13			
19.5	68.5	36.6	2020-09-16 20:19			
32.3	52.5	84.8	2020-09-17 19:11			
NUMA						
P-RC (km)	RMW (km)	WC-RC (km)	DATE TIME			
52.2	211.7	-	2017-11-16 08:19			
64.7	126.5	-	2017-11-16 09:14			
17.0	48.8	-	2017-11-17 19:17			
24.5	49.8	26.6	2017-11-17 20:13			
8.7	47.5	-	2017-11-18 09:18			
development phase						
mature phase						

ZORBAS					
P-RC (km)	RMW (km)	WC-RC (km)	DATE TIME		
143.1	67.5	-	2018-09-27 07:53		

REFERENCES

- Panegrossi, G.; D'Adderio, L.P.; Dafis, S.; Rysman, J.-F.; Casella, D.; Dietrich, S.; Sanò, P.Warm Core and Deep Convection in Medicanes: A Passive Microwave-Based Investigation. Remote Sens. 2023, 15, 2838. https://doi.org/10.3390/rs15112838
- Rogers, R., Reasor, P., & Lorsolo, S. (2013). Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. *Monthly Weather Review*, 141(9), 2970-2991.
- Hong, G., G. Heygster, J. Miao, and K. Kunzi (2005), Detection of tropical deep convective clouds from AMSU-B water vapor channels measurements, J. Geophys. Res., 110, D05205, doi:10.1029/2004JD004949.
- Rysman, J. F., Claud, C., & Delanoë, J. (2016). Monitoring deep convection and convective overshooting from 60 S to 60 N using MHS: a Cloudsat/CALIPSO-based assessment. IEEE Geoscience and Remote Sensing Letters, 14(2), 159-163.
- Wimmers, A. J., & Velden, C. S. (2016). Advancements in objective multisatellite tropical cyclone center fixing. Journal of Applied Meteorology and Climatology, 55(1), 197-212.

In most cases the WC center is located at shorter distances than RMW, even if at larger distances from RC with respect to P. Generally, the distance between P and RC decreases as RMW decreases and during mature phase.

ARCHER vs MeRCAD

The Automated Rotational Center Hurricane Eye Retrieval (ARCHER) algorithm, developed by the TC group at CIMSS/University of Wisconsin-Madison, is widely used for the correct identification of a TC's center of rotation (Wimmers and Welden, 2016). In this study it is applied to medicanes for the first time. A very good agreement between MeRCAD and ARCHER position of the RC for lanos and Numa occurs.

20.7	70.5	77.5	2018-09-27 20:14				
32.7	37.5	-	2018-09-29 08:52				
	ROLF						
P-RC (km)	RMW (km)	WC-RC (km)	DATE TIME				
17.7	82.8	55.6	2011-11-06 09:20				
57.6	90.8	86.0	2011-11-08 10:18				
18.3	55.9	-	2011-11-08 19:58				
	APOLLO						
P-RC (km)	RMW (km)	WC-RC (km)	DATE TIME				
69.8	106.7	-	2021-10-27 08:13				
38.1	102.5	-	2021-10-27 19:32				
37.3	116.5	-	2021-10-27 20:20				
36.6	68.5	-	2021-10-28 18:42				
7.9	59.5	29.1	2021-10-29 08:20				
9.2	62.9	-	2021-10-29 09:12				
12.1	57.5	-	2021-10-29 19:39				
15.7	69.4	-	2021-10-29 20:31				
14.8	39.7	_	2021-10-30 19:18				