

Satellite-based characterization of Mediterranean tropical-like cyclones (Medicanes)

Giulia Panegrossi¹, Leo Pio D'Adderio¹, Paolo Sanò¹, Daniele Casella¹, Stefano Sebastianelli¹, Jean-Francois Rysman², Stavros Dafis^{3,4}, Mario Marcello Miglietta¹, Valentina di Francesca⁵, and Derrick Herndon⁶

- 1 National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Italy
- 2 LMD & LadHyX, CNRS, 'Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- 3 Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece
- 4 Data4Risk, Paris, France
- 5 CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UT3
- 6 Cooperative Institute of Meteorological Satellite Studies (CIMSS) University of Wisconsin-Madison

What is a Medicane?

A *Medicane* or *Tropical-Like Cyclone* (*TLC*) is a mesoscale system which develops in the Mediterranean Sea and displays characteristics similar to Tropical Cyclones (TC):

Presence of Warm Core (WC)

MW vertical cross-section of TB anomaly for medicane Zorbas, 29 Oct. 2018.

Spiraling cloud structure and rainbands around an **almost-cloudless** "eye"

Medicane "Numa" MODIS Terra VIS image, 18 Nov. 2017

Nearly-closed surface wind field with maximum speed within a few tens of km from the center

Medicane "Apollo" ASCAT wind field 29 Oct. 2021

Medicane Diagnostics based on PMW radiometry

Panegrossi et al., Rem. Sens. 2023 D'Adderio et al., Atmos. Res., 2024

T sounding channels 54-55 GHz (TB anomaly at 600-200 hPa)

Well established metodology for Tropical Cyclones

Panegrossi et al., Rem. Sensing, 2023 D'Adderio et al., Atmos. Res., 2024

> 260.0 250.0 🔀 240.0 🖁

230.0 8 220.0 E

In TC TB warm anomaly is related to storm intensity (min MSLP and max wind) (Herndon and Velden, 2021)

DC and closed eye detection

High Frequency channels 89-190 GHz:

Deep convection detection

Cloud Top Height Estimation

Ice water Path estimation

(DeepStorm *Rysman et al., JGR, 2021*)

IANOS: MetOp-B AMSU/MHS September 17, 2020 at 08:39 UTC

Medicane – Tropical Transition

Tropical transition <-> WC sustained by diabatic processes

Goal: demonstrate that satellite data provide useful tools to identify tropical transition

- ✓ Closed surface wind circulation, center of rotation, RMW (see Poster P11, Session PL2, Wed.)
- ✓ Detection of axy-symmetric vertically aligned WC
- Deep convection close to the cyclone centre
- Closed-eye

Development phase

- ✓ Top-down WC
- ✓ WC originating from baroclinic processes (stratospheric warm air intrusion)

✓ Tropical Transition

- ✓ Bottom-up WC ✓ WC originating from diabatic processes (air-sea
- interaction and latent heat release)

26 Oct 2021 - 09:22 UTC

Apollo

Apollo 29 Oct 2021 - 08:20 UTC

Cloud and deep convection features

Automated closed eye detection within WC area $(IWP~0 kg/m^2)$ CTH < 5 km

Di Francesca et al., Atmos. Res. in review

6.0 H

5.0

4.0

3.0

2.0

Passive Microwave Radiometry – Instruments & Frequencies

	AMSU-A/B - MHS	SSMIS	ATMS
Satellites	NOAA15/16/17/18/19, MetOp-A, MetOp-B, MetOp-C	F16, F17, F18	S-NPP, NOAA20
Scanning Type	Linear cross-track	Conical	Cross-track
54 GHz channels resolution	48 km (nadir); 150 km x 80 km (swath's edge)	25.8 km x 17.5 km	31.6 km (nadir); 137 km x 60 km (swath's edge)
183 GHz channels resolution	16 km (nadir); 50 km x 26.7 km (swath's edge)	14.4 km x 13.1 km	15.8 km (nadir); 68.4 km x 30 km (swath's edge)

	Conical scanning (SSMIS) SATELLITE VELOCITY VECTOR
Cross-track scanning	NADIR
(AMUS/MHS, ATMS)	PATH
150km Resolution ~ 50km Fov 30	SWATH ANTENNA FOOT-PRINT

Frequency (GHz)	Application	
53.596	Atmospheric T at 600 hPa (~4 km)	
54.4	Atmospheric T at 450 hPa (~6 km)	
54.94	Atmospheric T at 300 hPa (~9 km)	
55.5	Atmospheric T at 250 hPa (~12 km)	
89	TB warming due to cloud water emission + TB cooling due to scattering by graupel-hail	
183.31 ±7	TB warming due to WV emission + TB cooling due to scattering by cloud ice ~ 6 km	
183.31 ±3	TB warming due to WV emission TB cooling due to scattering by cloud ice ~ 9 km	
183.31 ±1	TB warming due to WV emission emission TB cooling due to scattering by cloud ice ~ 12 km	

Observational Dataset

Tracks of the 23 case-studies cyclones.

Dataset provided by MedCyclones COST Action - WG1

Total of parsed satellite overpasses = 447

AMSU/MHS, ATMS, SSMIS MW radiometers

+ 3 medicanes in 2023 Helios, Juliette, Daniel

-		
Name (Year)	AMSU/SSMIS/ATMS	тот
Unnamed (2000)	8/0/0	8
Unnamed (2000)	7/0/0	7
Fernando (2003)	16/0/0	16
Adelina (2003)	13/0/0	13
Unnamed (2004)	8/0/0	8
Unnamed (2004)	13/0/0	13
Zeo (2005)	14/6/0	20
Maria (2006)	15/6/0	21
Antinoo (2007)	18/5/0	23
Ortensiano (2007)	21/5/0	26
Unnamed (2007)	11/4/0	15
Unnamed (2007)	8/2/0	12
Unnamed (2008)	9/2/0	11
Rolf (2011)	25/14/0	39
Unnamed (2012)	17/9/0	26
Ilona(2014)	22/4/6	32
Qendresa (2014)	15/3/3	21
Trixie (2016)	11/0/6	17
Numa (2017)	12/0/6	18
Zorbas (2018)	12/0/9	21
lanos (2020)	8/0/15	23
Unnamed (2020)	14/0/13	27
Apollo (2021)	16/0/14	30
		•

Di Francesca et al., under review

Results: Warm Core Analysis

Trixie (October 2016)

ATMS – SNPP 30/10/16 00:55 UTC

Development stage:

- shallow
- irregular
- weak

ATMS – SNPP 31/10/16 00:38 UTC

Mature stage:

- shallow
- symmetric
- intense

Results: Trixie Analysis (October 2016)

Development Stage

- **DC** almost **absent**, far from the centre
- Low CTH near the centre (< 7 km)
- Very low IWP near the centre (<1.5)

Mature Stage

- Closed eye
- Organized and intense DC within 100 km
- CTH ranging from 11 to 13 km near the centre
- Extensive and high IWP near the centre (> 5 km)

Results: Warm Core Analysis

ATMS – SNPP 30/10/16 00:55 UTC

Development stage:

- shallow
- irregular
- weak

ATMS – SNPP 31/10/16 00:38 UTC

Mature phase:

- Irregular
- indication of topdown development

Fernando (May 2003)

Results: Fernando Analysis (May 2003)

Development Stage

- **DC** almost **absent**, far from the centre
- Low CTH near the centre (< 7 km)
- Very low IWP near the centre (<1.5)

Mature Stage

- Closed eye
- DC absent within 100 km from the centre
- Low CTH near the centre (< 7 km)
- Low IWP near the centre (< 2.5)

Did the 3 most recent medicanes undergo a tropical transition?

Development phase: stratospheric warm air intrusion evidenced by TB anomaly at 55.5 GHz (200 hPa)

Helios 8-10 Feb 2023

- ✓ Spiralling cloud structure
- ✓ Closed-eye not detected

✓ Top-down development WC

SEVIRI VIS 20230210 12:00 UTC

- ✓ The WC shape is quite well defined at 54.4 and 54.94 GHz
- ✓ Positive TB anomaly at 55.5 GHz indicates stratospheric intrusion
- √ 53.596 GHz affected by surface precipitation (warming) and ice scattering (cooling)

Evolution of the TB map at 55.5 GHz (9-10 Feb 2023)

ATMS - DC features

- ✓ No scattering signal close to the cyclone centre (no ice hydrometeors, warm rain processes
- ✓ Deep convection only in the outer rainbands far from cyclone centre

Juliette

27 Feb - 3 March 2023

- ✓ Spiralling cloud structure
- ✓ Well defined closed eye

SEVIRI VIS 20230301 12:00 UTC

- ✓ **Bottom-up** WC initial development
- ✓ Shallower and smaller well defined and marked at 54.4 and 54.94 GHz
- ✓ Contamination of land emissivity on TB anomaly signal

Evolution of the TB map at 55.5 GHz (27 Feb-1 Mar 2023)

ATMS - DC features

- ✓ Weak scattering signal close to the cyclone centre
- ✓ Nearly closed-eye
- Deep convection near the center (gets more organized at later stage)

Daniel 5-10 Sep 2023

- ✓ Spiralling cloud structure
- ✓ Not completely closed cloud-free eye

- ✓ Deep WC bottom-up development
- ✓ The WC is well defined and marked in all channels
- ✓ The TB signal at 53.596 GHz highlights both the presence of DC (negative TB anomaly)

Evolution of the TB map at 55.5 GHz (5-9 Sep. 2023)

Strong indication of Tropical Transition just before making landfall in Lybia

- ✓ Strong scattering signal close to the cyclone centre
- ✓ Nearly-closed eye
- ✓ Deep convection near the center

Conclusions

- Satellite passive microwave (PMW) radiometers provide useful measurements for identification and characterization of phenomenological features and physical processes in medicanes
- Presence and origin of the warm core, presence of the closed eye, deep convection strength and organization can be inferred from PMW measurements: categorization of Type A (tropical transition) and Type B medicanes
- First EO-based contribution to definition and categorization of Medicanes

	CATEGORY «A» (Tropical Transition) WC driven by diabatic processes		CATEGORY «B» Warm core driven by baroclinic processes
•	Persistent, shallow/deep, symmetric, hor. Extended, intense, bottom-up developed WC	•	Persistent, shallow/deep, top-down developed WC
•	Extensive DC in mature stage in proximity to the center (→WC has a diabatic origin)	•	Absent or very scarse DC in mature stage; persistent stratospheric intrusion
•	«Closed» eye in mature stage	•	(→WC has a baroclinic origin)
•	Season of most likely occurrence: Sept Nov.	•	«Closed» eye in mature stage
•	Location of occurrence: central Med., Ionian Sea		
•	Rolf (2006/11) Numa** (2017/11) Zorbas (2018/09) Ianos (2020/09) Apollo** (2021/10) Trixie (2016/10) Juliette (2023/03) Daniel (2023/09)	•	Fernando (2003/05) Unnamed (2007/11) Unnamed (2008/12) Unnamed (2012/04) Ilona (2014/01) Qendresa (2014/11) Helios (2023/02)

Work in progress

Development of AI-based tools for closed-eye and WC detection, and for NRT tracking of medicanes using PMW radiometry, ASCAT winds, and MSG VIS/R imagery

https://medicanes.isac.cnr.it/

Contribution of air-sea interaction processes (marine heat wave and ocean heat content) on tropical transition only at its final stage

Daniel - Courtesy of Babita Jangir Jangir et al., 2024 (In preparation)

Thank you for your attention

g.panegrossi@isac.cnr.it

https://medcyclones.eu/

https://medicanes.isac.cnr.it/

Extra slides

Passive Microwave Radiometry – Instruments & Frequencies

	AMSU-A/B - MHS	SSMIS	ATMS
Satellites	NOAA15/16/17/18/19, MetOp-A, MetOp-B, MetOp-C	F16, F17, F18	S-NPP, NOAA20
Scanning Type	Linear cross-track	Conical	Cross-track
54 GHz channels resolution	48 km (nadir); 150 km x 80 km (swath's edge)	25.8 km x 17.5 km	31.6 km (nadir); 137 km x 60 km (swath's edge)
183 GHz channels resolution	16 km (nadir); 50 km x 26.7 km (swath's edge)	14.4 km x 13.1 km	15.8 km (nadir); 68.4 km x 30 km (swath's edge)

Frequency (GHz)	Application	
53.596	Atmospheric T at 600 hPa (~4 km)	
54.4	Atmospheric T at 450 hPa (~6 km)	
54.94	Atmospheric T at 300 hPa (~9 km)	
55.5	Atmospheric T at 250 hPa (~12 km)	
89	TB warming due to cloud water emission + TB cooling due to scattering by graupel-hail	
183.31 ±7	TB warming due to WV emission + TB cooling due to scattering by cloud ice ~ 6 km	
183.31 ±3	TB warming due to WV emission TB cooling due to scattering by cloud ice ~ 9 km	
183.31 ±1	TB warming due to WV emission emission TB cooling due to scattering by cloud ice ~ 12 km	

Medicane Diagnostics based on PMW radiometry: automated closed-eye detection

The closed eye is searched within an area nearby the WC centre where ice is absent and cloud tops are low → CHT < 5 km (due to PMW low spatial resolution)

Medicane Ianos 17 September 2020 08:39 UTC ATMS - SNPP

Di Francesca et al., Atmos. Res. under review

Daniel

Why the tropical transition occurred only just before landfall?

Daniel – Air-Sea Interaction (preliminary analysis)

Marine Heatwave

- ✓ Daniel overpassed a moderate marine heatwave (MH) providing additional strength to the cyclone
- ✓ Considerable amount of ocean heat content (OHC) was available in the offshore the Libyan coasts

Ocean Heat Content

✓ Positive air-sea interaction feedbacks which provided addition power to Daniel favouring the tropical transition

Courtesy of Babita Jangir Jangir et al., 2024 (In preparation)