Modelling Mediterranean cyclones across scales

Florian Pantillon

and many colleagues

TROPICANA, Institut Pascal, 11 June 2024

Which scales are we talking about?

Part I: O(1–10 km)

Part II: O(0.1–1 km)

11 June 2024

The life cycle of medicane lanos

cyclogenesis

mature phase dissin

11 June 2024

visible imagery from MODIS instrument

satellites

and TERRA

aboard AQUA

Model intercomparison project

15 meteorologists from 5 European countries EU COST Action MedCyclones <u>https://medcyclones.eu/</u>
5 meteorological models with 10 standard configurations BOLAM, Méso-NH, MetUM, MOLOCH, WRF

1 common framework

Same domain, same horizontal resolution, same initial and lateral boundary conditions

MedCyclones

COST Action CA19109

Results from control simulations

→ large spread in track (southeastward shift) and intensity (too weak)

11 June 2024

florian.pantillon@aero.obs-mip.fr

5

Sensitivity to initial conditions

11 June 2024

Sensitivity to horizontal resolution

→ improved track with explicit representation of deep convection

11 June 2024

Representation of convection (t+18h)

Infrared brightness temperature (in K) observed and simulated by the Meso-NH model

→ convective activity much enhanced at high resolution

Interaction between scales I (t+24h)

Composites of 300 hPa wind (vectors and shading), 300 hPa potential vorticity (pink contours), MSLP (red contours)

→ slight difference in phasing between simulations

Interaction between scales II (t+48h)

Composites of 300 hPa wind (vectors and shading), 300 hPa potential vorticity (pink contours), MSLP (red contours)

→ upscale impact of convection on phasing of cyclone with upper-level jets

Which scales are we talking about?

Part I: O(1–10 km)

Part II: O(0.1–1 km)

11 June 2024

Project anr[®]JCJC "WINDGUST" (2022-2025)

Case study: Mediterranean cyclone Adrian (aka Vaia)

Small but intense cyclone on 29 October 2018 over the northwestern Mediterranean
Extreme winds, heavy precipitation and storm surges (Davolio et al. 2020)
→ PhD thesis of Wahiba Lfarh (2020–2023), co-supervised by Jean-Pierre Chaboureau

- Shallow convection: parameterized
- Turbulence: parameterized

- Shallow convection: explicit
- **Turbulence:** partly explicit (most energetic eddies)

Zoom on the strong wind area

Wind structures approximately aligned with wind direction

- Width λ≈2400m
- Stronger/weaker winds ~ downward/upward motion
- = roll vortices responsible for vertical transport of momentum.

15

Impact on near-surface winds

- Large-eddy simulation $\Delta x=200m$ close to $\Delta x=100m$ and $\Delta x=50m$
- Mesoscale simulation
 Δx=1km <u>overestimates</u>
 vertical momentum
 transport and near surface winds vs.
 large-eddy simulation

Vertical momentum transport

16

11 June 2024

Beyond resolution: sensitivity to air-sea exchanges

Accounting for sea spray increases surface heat fluxes

- **Sensible** heat fluxes → stretched rolls + **enhanced momentum transport**
- Latent heat fluxes \rightarrow weak impact

Are fine-scale wind structures realistic?

Windstorm Alex on 02 Oct 2020

10m wind Méso-NH Δx =100m

Modelling Mediterranean cyclones across scales

Part I: O(1-10 km)

Model Intercomparison of medicane lanos

- 1) Robust sensitivity to initial conditions: cyclogenesis hardly captured using ERA5
- 2) Robust sensitivity to horizontal resolution: improved track with explicit convection
- 3) Crucial interplay between convective and baroclinic processes during cyclogenesis

Pantillon, Davolio et al., in rev. https://doi.org/10.5194/egusphere-2024-1105 Sanchez et al., in rev. https://doi.org/10.5194/egusphere-2023-2431

EU COST Action MedCyclones (2020-2024)

Part II: O(0.1–1 km)

Large-eddy simulations of cyclone Adrian

- 1) Vertical **momentum** transport driven by rolls: overestimated at km resolution
- 2) Vertical **momentum** transport also controlled by surface heat fluxes: poorly constrained in models due to lack of observations

Lfarh et al., 2023. https://doi.org/10.1175/MWR-D-23-0099.1

Lfarh et al., in rev. https://doi.org/10.22541/essoar.169774560.07703883/v1

→ Next step: ESA MEDICANES (2024-2026)

11 June 2024

